ai
  • Crypto News
  • Ai
  • eSports
  • Bitcoin
  • Ethereum
  • Blockchain
Home»Ai»Building an Advanced Portfolio Analysis and Market Intelligence Tool with OpenBB
Ai

Building an Advanced Portfolio Analysis and Market Intelligence Tool with OpenBB

Share
Facebook Twitter LinkedIn Pinterest Email

In this tutorial, we dive deep into the advanced capabilities of OpenBB to perform comprehensive portfolio analysis and market intelligence. We start by constructing a tech-focused portfolio, fetching historical market data, and computing key performance metrics. We then explore advanced technical indicators, sector-level performance, market sentiment, and correlation-based risk analysis. Along the way, we integrate visualizations and insights to make the analysis more intuitive and actionable, ensuring that we cover both the quantitative and qualitative aspects of investment decision-making. Check out the Full Codes here.

!pip install openbb[all] --quiet


import warnings
warnings.filterwarnings('ignore')


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import openbb


from openbb import obb


pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)


print("🚀 Advanced OpenBB Financial Analysis Tutorial")
print("=" * 60)

We begin by installing and importing OpenBB along with essential Python libraries for data analysis and visualization. We configure our environment to suppress warnings, set display options for pandas, and get ready to perform advanced financial analysis. Check out the Full Codes here.

print("\n📊 1. BUILDING AND ANALYZING A TECH PORTFOLIO")
print("-" * 50)


tech_stocks = ['AAPL', 'GOOGL', 'MSFT', 'TSLA', 'NVDA']
initial_weights = [0.25, 0.20, 0.25, 0.15, 0.15]


end_date = datetime.now().strftime('%Y-%m-%d')
start_date = (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d')


portfolio_data = {}
portfolio_returns = pd.DataFrame()
successful_stocks = []


print(f"Fetching data from {start_date} to {end_date}...")


for i, symbol in enumerate(tech_stocks):
   try:
       data = obb.equity.price.historical(symbol=symbol, start_date=start_date, end_date=end_date)
       df = data.to_df()
      
       if df.index.duplicated().any():
           df = df[~df.index.duplicated(keep='first')]
      
       portfolio_data[symbol] = df
      
       returns = df['close'].pct_change().dropna()
       portfolio_returns[symbol] = returns
       successful_stocks.append(symbol)
      
       print(f"✅ {symbol}: {len(df)} days of data")
   except Exception as e:
       print(f"❌ Error fetching {symbol}: {str(e)}")


if successful_stocks:
   successful_indices = [tech_stocks.index(stock) for stock in successful_stocks]
   portfolio_weights = [initial_weights[i] for i in successful_indices]
   total_weight = sum(portfolio_weights)
   portfolio_weights = [w/total_weight for w in portfolio_weights]
  
   print(f"\n📋 Portfolio composition (normalized weights):")
   for stock, weight in zip(successful_stocks, portfolio_weights):
       print(f"  {stock}: {weight:.1%}")
else:
   portfolio_weights = []


print("\n📈 2. PORTFOLIO PERFORMANCE ANALYSIS")
print("-" * 50)


if not portfolio_returns.empty and portfolio_weights:
   weighted_returns = (portfolio_returns * portfolio_weights).sum(axis=1)
  
   annual_return = weighted_returns.mean() * 252
   annual_volatility = weighted_returns.std() * np.sqrt(252)
   sharpe_ratio = annual_return / annual_volatility if annual_volatility > 0 else 0
   max_drawdown = (weighted_returns.cumsum().expanding().max() - weighted_returns.cumsum()).max()
  
   print(f"Portfolio Annual Return: {annual_return:.2%}")
   print(f"Portfolio Volatility: {annual_volatility:.2%}")
   print(f"Sharpe Ratio: {sharpe_ratio:.3f}")
   print(f"Max Drawdown: {max_drawdown:.2%}")
  
   print("\n📊 Individual Stock Performance:")
   for stock in successful_stocks:
       stock_return = portfolio_returns[stock].mean() * 252
       stock_vol = portfolio_returns[stock].std() * np.sqrt(252)
       print(f"{stock}: Return {stock_return:.2%}, Volatility {stock_vol:.2%}")
else:
   print("❌ No valid portfolio data available for analysis")

We build a tech portfolio, fetch a year of prices with OpenBB, compute normalized weights and daily returns, then evaluate performance, annual return, volatility, Sharpe, max drawdown, and review stock-wise stats in real time. Check out the Full Codes here.

print("\n🔍 3. ADVANCED TECHNICAL ANALYSIS")
print("-" * 50)


symbol="NVDA"
try:
   price_data = obb.equity.price.historical(symbol=symbol, start_date=start_date, end_date=end_date)
   df = price_data.to_df()
  
   df['SMA_20'] = df['close'].rolling(window=20).mean()
   df['SMA_50'] = df['close'].rolling(window=50).mean()
   df['EMA_12'] = df['close'].ewm(span=12).mean()
   df['EMA_26'] = df['close'].ewm(span=26).mean()
  
   df['MACD'] = df['EMA_12'] - df['EMA_26']
   df['MACD_signal'] = df['MACD'].ewm(span=9).mean()
  
   delta = df['close'].diff()
   gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
   loss = (-delta.where(delta  df['MACD_signal'].iloc[-1] else "SELL"
   price_vs_sma20 = "Above" if current_price > df['SMA_20'].iloc[-1] else "Below"
  
   print(f"\n{symbol} Technical Analysis:")
   print(f"Current Price: ${current_price:.2f}")
   print(f"RSI (14): {current_rsi:.2f} ({'Overbought' if current_rsi > 70 else 'Oversold' if current_rsi 

We run advanced technical analysis on NVDA, calculating SMAs, EMAs, MACD, RSI, and Bollinger Bands, to gauge momentum and potential entry/exit signals. We then screen sectors by annualized returns across Technology, EVs, and Semiconductors, and we pull fresh company headlines to fold market sentiment into our thesis. Check out the Full Codes here.

print("\n⚠️  6. RISK ANALYSIS")
print("-" * 50)


if not portfolio_returns.empty and len(portfolio_returns.columns) > 1:
   correlation_matrix = portfolio_returns.corr()
   print("\nPortfolio Correlation Matrix:")
   print(correlation_matrix.round(3))
  
   portfolio_var = np.dot(portfolio_weights, np.dot(correlation_matrix *
                         (portfolio_returns.std().values.reshape(-1,1) *
                          portfolio_returns.std().values.reshape(1,-1)),
                         portfolio_weights))
   portfolio_risk = np.sqrt(portfolio_var) * np.sqrt(252)
   print(f"\nPortfolio Risk (Volatility): {portfolio_risk:.2%}")


print("\n📊 7. CREATING PERFORMANCE VISUALIZATIONS")
print("-" * 50)


if not portfolio_returns.empty:
   fig, axes = plt.subplots(2, 2, figsize=(15, 10))
   fig.suptitle('Portfolio Analysis Dashboard', fontsize=16)
  
   cumulative_returns = (1 + portfolio_returns).cumprod()
   cumulative_returns.plot(ax=axes[0,0], title="Cumulative Returns", alpha=0.7)
   axes[0,0].legend(bbox_to_anchor=(1.05, 1), loc="upper left")
  
   rolling_vol = portfolio_returns.rolling(window=30).std() * np.sqrt(252)
   rolling_vol.plot(ax=axes[0,1], title="30-Day Rolling Volatility", alpha=0.7)
   axes[0,1].legend(bbox_to_anchor=(1.05, 1), loc="upper left")
  
   weighted_returns.hist(bins=50, ax=axes[1,0], alpha=0.7)
   axes[1,0].set_title('Portfolio Returns Distribution')
   axes[1,0].axvline(weighted_returns.mean(), color="red", linestyle="--", label="Mean")
   axes[1,0].legend()
  
   if len(correlation_matrix) > 1:
       sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0, ax=axes[1,1])
       axes[1,1].set_title('Correlation Matrix')
  
   plt.tight_layout()
   plt.show()


print("\n🎯 8. INVESTMENT SUMMARY & RECOMMENDATIONS")
print("-" * 50)


print("Portfolio Analysis Complete!")
print(f"✅ Analyzed {len(successful_stocks)} stocks")
print(f"✅ Calculated {len(sector_performance)} sector performances")
print(f"✅ Generated technical indicators and risk metrics")


if not portfolio_returns.empty and len(successful_stocks) > 0:
   best_performer = portfolio_returns.mean().idxmax()
   worst_performer = portfolio_returns.mean().idxmin()
   print(f"🏆 Best Performer: {best_performer}")
   print(f"📉 Worst Performer: {worst_performer}")


print("\n💡 Key Insights:")
print("• Diversification across tech sectors reduces portfolio risk")
print("• Technical indicators help identify entry/exit points")
print("• Regular rebalancing maintains target allocations")
print("• Monitor correlations to avoid concentration risk")


print("\n🔧 Next Steps:")
print("• Backtest different allocation strategies")
print("• Add fundamental analysis metrics")
print("• Implement automated alerts for technical signals")
print("• Explore ESG and factor-based screening")


print("\n" + "="*60)
print("OpenBB Advanced Tutorial Complete! 🎉")
print("Visit https://openbb.co for more features and documentation")

We quantify portfolio risk via correlations and annualized volatility, visualize performance with cumulative returns, rolling volatility, return distribution, and a correlation heatmap, then conclude with best/worst performers, key insights (diversification, signals, rebalancing), and concrete next steps like backtesting, adding fundamentals, alerts, and ESG screening.

In conclusion, we have successfully leveraged OpenBB to build, analyze, and visualize a diversified portfolio while extracting sector insights, technical signals, and risk metrics. We see how combining performance statistics with market sentiment and advanced visualizations empowers us to make informed investment decisions. This approach allows us to continuously monitor and refine our strategies, ensuring that we remain agile in changing market conditions and confident in the data-driven choices we make.


Sana Hassan, a consulting intern at Marktechpost and dual-degree student at IIT Madras, is passionate about applying technology and AI to address real-world challenges. With a keen interest in solving practical problems, he brings a fresh perspective to the intersection of AI and real-life solutions.

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Meet the early-adopter judges using AI

août 11, 2025

The Download: A quantum radar, and chipmakers’ deal with the US government

août 11, 2025

This quantum radar could image buried objects

août 11, 2025

The Best Chinese Open Agentic/Reasoning Models (2025): Expanded Review, Comparative Insights & Use Cases

août 11, 2025
Add A Comment

Comments are closed.

Top Posts

SwissCryptoDaily.ch delivers the latest cryptocurrency news, market insights, and expert analysis. Stay informed with daily updates from the world of blockchain and digital assets.

We're social. Connect with us:

Facebook X (Twitter) Instagram Pinterest YouTube
Top Insights

Bitcoin Price Pumps Above $120,000 As Michael Saylor’s Strategy Buys $18 Million Worth Of Bitcoin

août 11, 2025

Ethereum Whale Activity Surges With $946.6M Weekly Accumulation – Details

août 11, 2025

The Team Liquid CS roster may be back on a LAN stage, but it is far from true recovery

août 11, 2025
Get Informed

Subscribe to Updates

Get the latest creative news from FooBar about art, design and business.

Facebook X (Twitter) Instagram Pinterest
  • About us
  • Get In Touch
  • Cookies Policy
  • Privacy-Policy
  • Terms and Conditions
© 2025 Swisscryptodaily.ch.

Type above and press Enter to search. Press Esc to cancel.