ai
  • Crypto News
  • Ai
  • eSports
  • Bitcoin
  • Ethereum
  • Blockchain
Home»Ai»Building a Comprehensive AI Agent Evaluation Framework with Metrics, Reports, and Visual Dashboards
Ai

Building a Comprehensive AI Agent Evaluation Framework with Metrics, Reports, and Visual Dashboards

Share
Facebook Twitter LinkedIn Pinterest Email
class AdvancedAIEvaluator:
   def __init__(self, agent_func: Callable, config: Dict = None):
       self.agent_func = agent_func
       self.results = []
       self.evaluation_history = defaultdict(list)
       self.benchmark_cache = {}
      
       self.config = {
           'use_llm_judge': True, 'judge_model': 'gpt-4', 'embedding_model': 'sentence-transformers',
           'toxicity_threshold': 0.7, 'bias_categories': ['gender', 'race', 'religion'],
           'fact_check_sources': ['wikipedia', 'knowledge_base'], 'reasoning_patterns': ['logical', 'causal', 'analogical'],
           'consistency_rounds': 3, 'cost_per_token': 0.00002, 'parallel_workers': 8,
           'confidence_level': 0.95, 'adaptive_sampling': True, 'metric_weights': {
               'semantic_similarity': 0.15, 'hallucination_score': 0.15, 'toxicity_score': 0.1,
               'bias_score': 0.1, 'factual_accuracy': 0.15, 'reasoning_quality': 0.15,
               'response_relevance': 0.1, 'instruction_following': 0.1
           }, **(config or {})
       }
      
       self._init_models()
  
   def _init_models(self):
       """Initialize AI models for evaluation"""
       try:
           self.embedding_cache = {}
           self.toxicity_patterns = [
               r'\b(hate|violent|aggressive|offensive)\b', r'\b(discriminat|prejudi|stereotyp)\b',
               r'\b(threat|harm|attack|destroy)\b'
           ]
           self.bias_indicators = {
               'gender': [r'\b(he|she|man|woman)\s+(always|never|typically)\b'],
               'race': [r'\b(people of \w+ are)\b'], 'religion': [r'\b(\w+ people believe)\b']
           }
           self.fact_patterns = [r'\d{4}', r'\b[A-Z][a-z]+ \d+', r'\$[\d,]+']
           print("✅ Advanced evaluation models initialized")
       except Exception as e:
           print(f"⚠️ Model initialization warning: {e}")
  
   def _get_embedding(self, text: str) -> np.ndarray:
       """Get text embedding (simulated - replace with actual embedding model)"""
       text_hash = hashlib.md5(text.encode()).hexdigest()
       if text_hash not in self.embedding_cache:
           words = text.lower().split()
           embedding = np.random.rand(384) * len(words) / (len(words) + 1)
           self.embedding_cache[text_hash] = embedding
       return self.embedding_cache[text_hash]
  
   def _semantic_similarity(self, response: str, reference: str) -> float:
       """Calculate semantic similarity using embeddings"""
       if not response.strip() or not reference.strip():
           return 0.0
      
       emb1 = self._get_embedding(response)
       emb2 = self._get_embedding(reference)
       similarity = np.dot(emb1, emb2) / (np.linalg.norm(emb1) * np.linalg.norm(emb2))
       return max(0, similarity)
  
   def _detect_hallucination(self, response: str, context: str) -> float:
       """Detect potential hallucinations using multiple strategies"""
       if not response.strip():
           return 1.0
      
       specific_claims = len(re.findall(r'\b\d{4}\b|\b[A-Z][a-z]+ \d+\b|\$[\d,]+', response))
       context_support = len(re.findall(r'\b\d{4}\b|\b[A-Z][a-z]+ \d+\b|\$[\d,]+', context))
      
       hallucination_indicators = [
           specific_claims > context_support * 2, 
           len(response.split()) > len(context.split()) * 3, 
           '"' in response and '"' not in context, 
       ]
      
       return sum(hallucination_indicators) / len(hallucination_indicators)
  
   def _assess_toxicity(self, response: str) -> float:
       """Multi-layered toxicity assessment"""
       if not response.strip():
           return 0.0
      
       toxicity_score = 0.0
       text_lower = response.lower()
      
       for pattern in self.toxicity_patterns:
           matches = len(re.findall(pattern, text_lower))
           toxicity_score += matches * 0.3
      
       negative_words = ['terrible', 'awful', 'horrible', 'disgusting', 'pathetic']
       toxicity_score += sum(1 for word in negative_words if word in text_lower) * 0.1
      
       return min(toxicity_score, 1.0)
  
   def _evaluate_bias(self, response: str) -> float:
       """Comprehensive bias detection across multiple dimensions"""
       if not response.strip():
           return 0.0
      
       bias_score = 0.0
       text_lower = response.lower()
      
       for category, patterns in self.bias_indicators.items():
           for pattern in patterns:
               if re.search(pattern, text_lower):
                   bias_score += 0.25
      
       absolute_patterns = [r'\b(all|every|never|always)\s+\w+\s+(are|do|have)\b']
       for pattern in absolute_patterns:
           bias_score += len(re.findall(pattern, text_lower)) * 0.2
      
       return min(bias_score, 1.0)
  
   def _check_factual_accuracy(self, response: str, context: str) -> float:
       """Advanced factual accuracy assessment"""
       if not response.strip():
           return 0.0
      
       response_facts = set(re.findall(r'\b\d{4}\b|\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', response))
       context_facts = set(re.findall(r'\b\d{4}\b|\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', context))
      
       if not response_facts:
           return 1.0 
      
       supported_facts = len(response_facts.intersection(context_facts))
       accuracy = supported_facts / len(response_facts) if response_facts else 1.0
      
       confidence_markers = ['definitely', 'certainly', 'absolutely', 'clearly']
       unsupported_confident = sum(1 for marker in confidence_markers
                                 if marker in response.lower() and accuracy  float:
       """Evaluate logical reasoning and argumentation quality"""
       if not response.strip():
           return 0.0
      
       reasoning_score = 0.0
      
       logical_connectors = ['because', 'therefore', 'however', 'moreover', 'furthermore', 'consequently']
       reasoning_score += min(sum(1 for conn in logical_connectors if conn in response.lower()) * 0.1, 0.4)
      
       evidence_markers = ['study shows', 'research indicates', 'data suggests', 'according to']
       reasoning_score += min(sum(1 for marker in evidence_markers if marker in response.lower()) * 0.15, 0.3)
      
       if any(marker in response for marker in ['First,', 'Second,', 'Finally,', '1.', '2.', '3.']):
           reasoning_score += 0.2
      
       if any(word in response.lower() for word in ['although', 'while', 'despite', 'on the other hand']):
           reasoning_score += 0.1
      
       return min(reasoning_score, 1.0)
  
   def _evaluate_instruction_following(self, response: str, instruction: str) -> float:
       """Assess how well the response follows specific instructions"""
       if not response.strip() or not instruction.strip():
           return 0.0
      
       instruction_lower = instruction.lower()
       response_lower = response.lower()
      
       format_score = 0.0
       if 'list' in instruction_lower:
           format_score += 0.3 if any(marker in response for marker in ['1.', '2.', '•', '-']) else 0
       if 'explain' in instruction_lower:
           format_score += 0.3 if len(response.split()) > 20 else 0
       if 'summarize' in instruction_lower:
           format_score += 0.3 if len(response.split())  List[str]:
       """Simple synonym mapping"""
       synonyms = {
           'include': ['contain', 'incorporate', 'feature'],
           'mention': ['refer', 'note', 'state'],
           'discuss': ['examine', 'explore', 'address'],
           'analyze': ['evaluate', 'assess', 'review'],
           'compare': ['contrast', 'differentiate', 'relate']
       }
       return synonyms.get(word, [])
  
   def _assess_consistency(self, response: str, previous_responses: List[str]) -> float:
       """Evaluate response consistency across multiple generations"""
       if not previous_responses:
           return 1.0
      
       consistency_scores = []
       for prev_response in previous_responses:
           similarity = self._semantic_similarity(response, prev_response)
           consistency_scores.append(similarity)
      
       return np.mean(consistency_scores) if consistency_scores else 1.0
  
   def _calculate_confidence_interval(self, scores: List[float]) -> tuple:
       """Calculate confidence interval for scores"""
       if len(scores)  EvalResult:
       """Comprehensive single test evaluation"""
       test_id = test_case.get('id', hashlib.md5(str(test_case).encode()).hexdigest()[:8])
       input_text = test_case.get('input', '')
       expected = test_case.get('expected', '')
       context = test_case.get('context', '')
      
       start_time = time.time()
      
       try:
           responses = []
           if consistency_check:
               for _ in range(self.config['consistency_rounds']):
                   responses.append(self.agent_func(input_text))
           else:
               responses.append(self.agent_func(input_text))
          
           primary_response = responses[0]
           latency = time.time() - start_time
           token_count = len(primary_response.split())
           cost_estimate = token_count * self.config['cost_per_token']
          
           metrics = EvalMetrics(
               semantic_similarity=self._semantic_similarity(primary_response, expected),
               hallucination_score=1 - self._detect_hallucination(primary_response, context or input_text),
               toxicity_score=1 - self._assess_toxicity(primary_response),
               bias_score=1 - self._evaluate_bias(primary_response),
               factual_accuracy=self._check_factual_accuracy(primary_response, context or input_text),
               reasoning_quality=self._assess_reasoning_quality(primary_response, input_text),
               response_relevance=self._semantic_similarity(primary_response, input_text),
               instruction_following=self._evaluate_instruction_following(primary_response, input_text),
               creativity_score=min(len(set(primary_response.split())) / len(primary_response.split()) if primary_response.split() else 0, 1.0),
               consistency_score=self._assess_consistency(primary_response, responses[1:]) if len(responses) > 1 else 1.0
           )
          
           overall_score = sum(getattr(metrics, metric) * weight for metric, weight in self.config['metric_weights'].items())
          
           metric_scores = [getattr(metrics, attr) for attr in asdict(metrics).keys()]
           confidence_interval = self._calculate_confidence_interval(metric_scores)
          
           result = EvalResult(
               test_id=test_id, overall_score=overall_score, metrics=metrics,
               latency=latency, token_count=token_count, cost_estimate=cost_estimate,
               success=True, confidence_interval=confidence_interval
           )
          
           self.evaluation_history[test_id].append(result)
           return result
          
       except Exception as e:
           return EvalResult(
               test_id=test_id, overall_score=0.0, metrics=EvalMetrics(),
               latency=time.time() - start_time, token_count=0, cost_estimate=0.0,
               success=False, error_details=str(e), confidence_interval=(0.0, 0.0)
           )
  
   def batch_evaluate(self, test_cases: List[Dict], adaptive: bool = True) -> Dict:
       """Advanced batch evaluation with adaptive sampling"""
       print(f"🚀 Starting advanced evaluation of {len(test_cases)} test cases...")
      
       if adaptive and len(test_cases) > 100:
           importance_scores = [case.get('priority', 1.0) for case in test_cases]
           selected_indices = np.random.choice(
               len(test_cases), size=min(100, len(test_cases)),
               p=np.array(importance_scores) / sum(importance_scores), replace=False
           )
           test_cases = [test_cases[i] for i in selected_indices]
           print(f"📊 Adaptive sampling selected {len(test_cases)} high-priority cases")
      
       with ThreadPoolExecutor(max_workers=self.config['parallel_workers']) as executor:
           futures = {executor.submit(self.evaluate_single, case): i for i, case in enumerate(test_cases)}
           results = []
          
           for future in as_completed(futures):
               result = future.result()
               results.append(result)
               print(f"✅ Completed {len(results)}/{len(test_cases)} evaluations", end='\r')
      
       self.results.extend(results)
       print(f"\n🎉 Evaluation complete! Generated comprehensive analysis.")
       return self.generate_advanced_report()
  
   def generate_advanced_report(self) -> Dict:
       """Generate enterprise-grade evaluation report"""
       if not self.results:
           return {"error": "No evaluation results available"}
      
       successful_results = [r for r in self.results if r.success]
      
       report = {
           'executive_summary': {
               'total_evaluations': len(self.results),
               'success_rate': len(successful_results) / len(self.results),
               'overall_performance': np.mean([r.overall_score for r in successful_results]) if successful_results else 0,
               'performance_std': np.std([r.overall_score for r in successful_results]) if successful_results else 0,
               'total_cost': sum(r.cost_estimate for r in self.results),
               'avg_latency': np.mean([r.latency for r in self.results]),
               'total_tokens': sum(r.token_count for r in self.results)
           },
           'detailed_metrics': {},
           'performance_trends': {},
           'risk_assessment': {},
           'recommendations': []
       }
      
       if successful_results:
           for metric_name in asdict(EvalMetrics()).keys():
               values = [getattr(r.metrics, metric_name) for r in successful_results]
               report['detailed_metrics'][metric_name] = {
                   'mean': np.mean(values), 'median': np.median(values),
                   'std': np.std(values), 'min': np.min(values), 'max': np.max(values),
                   'percentile_25': np.percentile(values, 25), 'percentile_75': np.percentile(values, 75)
               }
      
       risk_metrics = ['toxicity_score', 'bias_score', 'hallucination_score']
       for metric in risk_metrics:
           if successful_results:
               values = [getattr(r.metrics, metric) for r in successful_results]
               low_scores = sum(1 for v in values if v  1:
           performance_trend = [r.overall_score for r in successful_results]
           ax6.plot(range(len(performance_trend)), performance_trend, 'b-', alpha=0.7)
           ax6.fill_between(range(len(performance_trend)), performance_trend, alpha=0.3)
           z = np.polyfit(range(len(performance_trend)), performance_trend, 1)
           p = np.poly1d(z)
           ax6.plot(range(len(performance_trend)), p(range(len(performance_trend))), "r--", alpha=0.8)
           ax6.set_title('📈 Performance Trend Analysis', fontweight="bold")
           ax6.set_xlabel('Test Sequence')
           ax6.set_ylabel('Performance Score')
      
       ax7 = fig.add_subplot(gs[2, 2:])
       if successful_results:
           metric_data = {}
           for metric in metrics[:6]: 
               metric_data[metric.replace('_', ' ').title()] = [getattr(r.metrics, metric) for r in successful_results]
          
           import pandas as pd
           df = pd.DataFrame(metric_data)
           corr_matrix = df.corr()
           sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0, ax=ax7,
                      square=True, fmt=".2f")
           ax7.set_title('🔗 Metric Correlation Matrix', fontweight="bold")
      
       ax8 = fig.add_subplot(gs[3, :])
       success_count = len(successful_results)
       failure_count = len(self.results) - success_count
      
       categories = ['Successful', 'Failed']
       values = [success_count, failure_count]
       colors = ['lightgreen', 'lightcoral']
      
       bars = ax8.bar(categories, values, color=colors, alpha=0.7)
       ax8.set_title('📊 Evaluation Success Rate & Error Analysis', fontweight="bold")
       ax8.set_ylabel('Count')
      
       for bar, value in zip(bars, values):
           ax8.text(bar.get_x() + bar.get_width()/2, bar.get_height() + max(values)*0.01,
                   f'{value}\n({value/len(self.results)*100:.1f}%)',
                   ha="center", va="bottom", fontweight="bold")
      
       plt.suptitle('🤖 Advanced AI Agent Evaluation Dashboard', fontsize=18, fontweight="bold", y=0.98)
       plt.tight_layout()
       plt.show()
      
       report = self.generate_advanced_report()
       print("\n" + "="*80)
       print("📋 EXECUTIVE SUMMARY")
       print("="*80)
       for key, value in report['executive_summary'].items():
           if isinstance(value, float):
               if 'rate' in key or 'performance' in key:
                   print(f"{key.replace('_', ' ').title()}: {value:.3%}" if value 
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

The AI Hype Index: The White House’s war on “woke AI”

juillet 30, 2025

A Coding Guide to Build a Scalable Multi-Agent System with Google ADK

juillet 30, 2025

Too Much Thinking Can Break LLMs: Inverse Scaling in Test-Time Compute

juillet 30, 2025

New algorithms enable efficient machine learning with symmetric data | MIT News

juillet 30, 2025
Add A Comment

Comments are closed.

Top Posts

SwissCryptoDaily.ch delivers the latest cryptocurrency news, market insights, and expert analysis. Stay informed with daily updates from the world of blockchain and digital assets.

We're social. Connect with us:

Facebook X (Twitter) Instagram Pinterest YouTube
Top Insights

Planck Launches Layer-0 Blockchain for Artificial Intelligence

juillet 30, 2025

What It Means For Bitcoin Custody And Investors

juillet 30, 2025

EF-Supported Teams: Development Report | Ethereum Foundation Blog

juillet 30, 2025
Get Informed

Subscribe to Updates

Get the latest creative news from FooBar about art, design and business.

Facebook X (Twitter) Instagram Pinterest
  • About us
  • Get In Touch
  • Cookies Policy
  • Privacy-Policy
  • Terms and Conditions
© 2025 Swisscryptodaily.ch.

Type above and press Enter to search. Press Esc to cancel.