ai
  • Crypto News
  • Ai
  • eSports
  • Bitcoin
  • Ethereum
  • Blockchain
Home»Ai»A Coding Guide to Build an AI Code-Analysis Agent with Griffe
Ai

A Coding Guide to Build an AI Code-Analysis Agent with Griffe

Share
Facebook Twitter LinkedIn Pinterest Email
class AICodeAnalyzer:
   """AI Agent for advanced code analysis using Griffe"""
  
   def __init__(self):
       self.analysis_cache = {}
       self.dependency_graph = nx.DiGraph()
  
   def analyze_package(self, package_name: str, search_paths: List[str] = None) -> Dict[str, Any]:
       """Comprehensive package analysis for AI decision making"""
       try:
           pkg = griffe.load(package_name, search_paths=search_paths, try_relative_path=False)
          
           analysis = {
               'package_name': package_name,
               'total_modules': 0,
               'total_classes': 0,
               'total_functions': 0,
               'complexity_score': 0,
               'api_surface': [],
               'inheritance_tree': {},
               'risk_factors': []
           }
          
           self._analyze_object(pkg, analysis)
          
           analysis['complexity_score'] = self._calculate_complexity(analysis)
          
           analysis['risk_factors'] = self._identify_risks(pkg, analysis)
          
           self.analysis_cache[package_name] = analysis
           return analysis
          
       except Exception as e:
           return {'error': f"Failed to analyze {package_name}: {str(e)}"}
  
   def analyze_simple_module(self, module_name: str) -> Dict[str, Any]:
       """Analyze a simple module without deep dependency resolution"""
       try:
           import importlib
           module = importlib.import_module(module_name)
          
           analysis = {
               'package_name': module_name,
               'total_modules': 1,
               'total_classes': 0,
               'total_functions': 0,
               'complexity_score': 0,
               'api_surface': [],
               'inheritance_tree': {},
               'risk_factors': []
           }
          
           for attr_name in dir(module):
               if not attr_name.startswith('_'): 
                   attr = getattr(module, attr_name)
                   if isinstance(attr, type): 
                       analysis['total_classes'] += 1
                       analysis['api_surface'].append({
                           'name': f"{module_name}.{attr_name}",
                           'type': 'class',
                           'public': True,
                           'docstring': bool(attr.__doc__),
                           'methods': len([m for m in dir(attr) if not m.startswith('_')])
                       })
                   elif callable(attr): 
                       analysis['total_functions'] += 1
                       analysis['api_surface'].append({
                           'name': f"{module_name}.{attr_name}",
                           'type': 'function',
                           'public': True,
                           'docstring': bool(attr.__doc__),
                           'parameters': 0 
                       })
          
           analysis['complexity_score'] = self._calculate_complexity(analysis)
          
           analysis['risk_factors'] = self._identify_basic_risks(analysis)
          
           self.analysis_cache[module_name] = analysis
           return analysis
          
       except Exception as e:
           return {'error': f"Failed to analyze {module_name}: {str(e)}"}
  
   def _analyze_object(self, obj, analysis: Dict[str, Any], path: str = ""):
       """Recursively analyze package objects"""
       try:
           current_path = f"{path}.{obj.name}" if path else obj.name
          
           if hasattr(obj, 'kind'):
               if obj.kind.value == 'module':
                   analysis['total_modules'] += 1
               elif obj.kind.value == 'class':
                   analysis['total_classes'] += 1
                   analysis['api_surface'].append({
                       'name': current_path,
                       'type': 'class',
                       'public': not obj.name.startswith('_'),
                       'docstring': bool(obj.docstring),
                       'methods': len([m for m in obj.members.values() if hasattr(m, 'kind') and m.kind.value == 'function'])
                   })
                  
                   if hasattr(obj, 'bases') and obj.bases:
                       analysis['inheritance_tree'][current_path] = [str(base) for base in obj.bases]
                      
               elif obj.kind.value == 'function':
                   analysis['total_functions'] += 1
                   analysis['api_surface'].append({
                       'name': current_path,
                       'type': 'function',
                       'public': not obj.name.startswith('_'),
                       'docstring': bool(obj.docstring),
                       'parameters': len(obj.parameters) if hasattr(obj, 'parameters') else 0
                   })
          
           if hasattr(obj, 'members'):
               for member in obj.members.values():
                   self._analyze_object(member, analysis, current_path)
                  
       except Exception as e:
           pass
  
   def _calculate_complexity(self, analysis: Dict[str, Any]) -> float:
       """Calculate package complexity score for AI decision making"""
       base_score = (analysis['total_classes'] * 2 +
                    analysis['total_functions'] * 1 +
                    analysis['total_modules'] * 0.5)
      
       inheritance_penalty = len(analysis['inheritance_tree']) * 1.5
      
       documented_items = sum(1 for item in analysis['api_surface'] if item['docstring'])
       total_items = len(analysis['api_surface'])
       doc_penalty = (total_items - documented_items) * 0.3 if total_items > 0 else 0
      
       return base_score + inheritance_penalty + doc_penalty
  
   def _identify_risks(self, pkg, analysis: Dict[str, Any]) -> List[str]:
       """Identify potential risks for AI agent decision making"""
       risks = []
      
       if len(analysis['api_surface']) > 50:
           risks.append("Large API surface - potential maintenance burden")
      
       documented = sum(1 for item in analysis['api_surface'] if item['docstring'])
       total = len(analysis['api_surface'])
       if total > 0 and documented / total  3:
           risks.append("Deep inheritance hierarchy detected")
      
       return risks
  
   def _identify_basic_risks(self, analysis: Dict[str, Any]) -> List[str]:
       """Basic risk identification for simple module analysis"""
       risks = []
      
       if len(analysis['api_surface']) > 30:
           risks.append("Large API surface")
      
       documented = sum(1 for item in analysis['api_surface'] if item['docstring'])
       total = len(analysis['api_surface'])
       if total > 0 and documented / total  Dict[str, Any]:
       """Compare two packages for AI decision making"""
       analysis1 = self.analyze_package(pkg1)
       if 'error' in analysis1:
           analysis1 = self.analyze_simple_module(pkg1)
      
       analysis2 = self.analyze_package(pkg2)
       if 'error' in analysis2:
           analysis2 = self.analyze_simple_module(pkg2)
      
       if 'error' in analysis1 or 'error' in analysis2:
           return {'error': 'Failed to compare packages'}
      
       comparison = {
           'package_comparison': {
               'complexity': {
                   pkg1: analysis1['complexity_score'],
                   pkg2: analysis2['complexity_score'],
                   'winner': pkg1 if analysis1['complexity_score']  self._doc_coverage(analysis2) else pkg2
               }
           },
           'recommendation': self._make_recommendation(analysis1, analysis2, pkg1, pkg2)
       }
      
       return comparison
  
   def _doc_coverage(self, analysis: Dict[str, Any]) -> float:
       """Calculate documentation coverage percentage"""
       if not analysis['api_surface']:
           return 0.0
       documented = sum(1 for item in analysis['api_surface'] if item['docstring'])
       return (documented / len(analysis['api_surface'])) * 100
  
   def _make_recommendation(self, a1: Dict, a2: Dict, pkg1: str, pkg2: str) -> str:
       """Make AI recommendation based on analysis"""
       score1 = (100 - a1['complexity_score']) + self._doc_coverage(a1)
       score2 = (100 - a2['complexity_score']) + self._doc_coverage(a2)
      
       if score1 > score2:
           return f"Recommend {pkg1}: Better complexity/documentation balance"
       elif score2 > score1:
           return f"Recommend {pkg2}: Better complexity/documentation balance"
       else:
           return "Packages are equivalent in key metrics"
  
   def visualize_analysis(self, package_name: str):
       """Create visualizations for AI insights"""
       if package_name not in self.analysis_cache:
           analysis = self.analyze_package(package_name)
           if 'error' in analysis:
               analysis = self.analyze_simple_module(package_name)
      
       analysis = self.analysis_cache[package_name]
      
       if 'error' in analysis:
           print(f"❌ Cannot visualize {package_name}: {analysis['error']}")
           return
      
       fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))
       fig.suptitle(f'AI Analysis Dashboard: {package_name}', fontsize=16, fontweight="bold")
      
       components = ['Modules', 'Classes', 'Functions']
       counts = [analysis['total_modules'], analysis['total_classes'], analysis['total_functions']]
       colors = ['#FF6B6B', '#4ECDC4', '#45B7D1']
      
       non_zero_components = []
       non_zero_counts = []
       non_zero_colors = []
       for i, count in enumerate(counts):
           if count > 0:
               non_zero_components.append(components[i])
               non_zero_counts.append(count)
               non_zero_colors.append(colors[i])
      
       if non_zero_counts:
           ax1.pie(non_zero_counts, labels=non_zero_components, colors=non_zero_colors,
                  autopct="%1.1f%%", startangle=90)
       else:
           ax1.text(0.5, 0.5, 'No components found', ha="center", va="center", transform=ax1.transAxes)
       ax1.set_title('Component Distribution')
      
       public_items = sum(1 for item in analysis['api_surface'] if item['public'])
       private_items = len(analysis['api_surface']) - public_items
      
       ax2.bar(['Public API', 'Private API'], [public_items, private_items],
               color=['#2ECC71', '#E74C3C'])
       ax2.set_title('API Surface Analysis')
       ax2.set_ylabel('Count')
      
       documented = sum(1 for item in analysis['api_surface'] if item['docstring'])
       undocumented = len(analysis['api_surface']) - documented
      
       ax3.bar(['Documented', 'Undocumented'], [documented, undocumented],
               color=['#3498DB', '#F39C12'])
       ax3.set_title('Documentation Coverage')
       ax3.set_ylabel('Count')
      
       complexity = analysis['complexity_score']
       ax4.barh(['Complexity Score'], [complexity], color="#9B59B6")
       ax4.set_title('Package Complexity')
       ax4.set_xlabel('Score')
      
       plt.tight_layout()
       plt.show()
      
       print(f"\n🤖 AI INSIGHTS for {package_name}:")
       print(f"📊 Complexity Score: {complexity:.2f}")
       print(f"📈 Total API Elements: {len(analysis['api_surface'])}")
       print(f"📚 Documentation Coverage: {self._doc_coverage(analysis):.1f}%")
      
       if analysis['risk_factors']:
           print(f"⚠️  Risk Factors:")
           for risk in analysis['risk_factors']:
               print(f"   • {risk}")
       else:
           print("✅ No major risk factors detected")
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

The Download: Pigeons’ role in developing AI, and Native artists’ tech interpretations

août 18, 2025

Alibaba AI Team Just Released Ovis 2.5 Multimodal LLMs: A Major Leap in Open-Source AI with Enhanced Visual Perception and Reasoning Capabilities

août 18, 2025

Why we should thank pigeons for our AI breakthroughs

août 18, 2025

Is Model Context Protocol MCP the Missing Standard in AI Infrastructure?

août 18, 2025
Add A Comment

Comments are closed.

Top Posts

SwissCryptoDaily.ch delivers the latest cryptocurrency news, market insights, and expert analysis. Stay informed with daily updates from the world of blockchain and digital assets.

We're social. Connect with us:

Facebook X (Twitter) Instagram Pinterest YouTube
Top Insights

Ethereum Store-of-Value Evolution: From Utility Token To Digital Reserve Asset

août 18, 2025

Bitcoin Market Rebound May Spark Altcoin Rally

août 18, 2025

Bitmine And Donald Trump Spent The Weekend Stacking Ethereum, Here’s How Much They Got

août 18, 2025
Get Informed

Subscribe to Updates

Get the latest creative news from FooBar about art, design and business.

Facebook X (Twitter) Instagram Pinterest
  • About us
  • Get In Touch
  • Cookies Policy
  • Privacy-Policy
  • Terms and Conditions
© 2025 Swisscryptodaily.ch.

Type above and press Enter to search. Press Esc to cancel.