ai
  • Crypto News
  • Ai
  • eSports
  • Bitcoin
  • Ethereum
  • Blockchain
Home»Ai»Building Advanced MCP (Model Context Protocol) Agents with Multi-Agent Coordination, Context Awareness, and Gemini Integration
Ai

Building Advanced MCP (Model Context Protocol) Agents with Multi-Agent Coordination, Context Awareness, and Gemini Integration

Share
Facebook Twitter LinkedIn Pinterest Email
class MCPAgent:
   """Advanced MCP Agent with evolved capabilities - Jupyter Compatible"""
  
   def __init__(self, agent_id: str, role: AgentRole, api_key: str = None):
       self.agent_id = agent_id
       self.role = role
       self.api_key = api_key
       self.memory = []
       self.context = AgentContext(
           agent_id=agent_id,
           role=role,
           capabilities=self._init_capabilities(),
           memory=[],
           tools=self._init_tools()
       )
      
       self.model = None
       if GEMINI_AVAILABLE and api_key:
           try:
               genai.configure(api_key=api_key)
               self.model = genai.GenerativeModel('gemini-pro')
               print(f"✅ Agent {agent_id} initialized with Gemini API")
           except Exception as e:
               print(f"⚠️  Gemini configuration failed: {e}")
               print("💡 Running in demo mode with simulated responses")
       else:
           print(f"🎭 Agent {agent_id} running in demo mode")
      
   def _init_capabilities(self) -> List[str]:
       """Initialize role-specific capabilities"""
       capabilities_map = {
           AgentRole.COORDINATOR: ["task_decomposition", "agent_orchestration", "priority_management"],
           AgentRole.RESEARCHER: ["data_gathering", "web_search", "information_synthesis"],
           AgentRole.ANALYZER: ["pattern_recognition", "data_analysis", "insight_generation"],
           AgentRole.EXECUTOR: ["action_execution", "result_validation", "output_formatting"]
       }
       return capabilities_map.get(self.role, [])
  
   def _init_tools(self) -> List[str]:
       """Initialize available tools based on role"""
       tools_map = {
           AgentRole.COORDINATOR: ["task_splitter", "agent_selector", "progress_tracker"],
           AgentRole.RESEARCHER: ["search_engine", "data_extractor", "source_validator"],
           AgentRole.ANALYZER: ["statistical_analyzer", "pattern_detector", "visualization_tool"],
           AgentRole.EXECUTOR: ["code_executor", "file_handler", "api_caller"]
       }
       return tools_map.get(self.role, [])
  
   def process_message(self, message: str, context: Optional[Dict] = None) -> Dict[str, Any]:
       """Process incoming message with context awareness - Synchronous version"""
      
       msg = Message(
           role="user",
           content=message,
           timestamp=datetime.now(),
           metadata=context
       )
       self.memory.append(msg)
      
       prompt = self._generate_contextual_prompt(message, context)
      
       try:
           if self.model:
               response = self._generate_response_gemini(prompt)
           else:
               response = self._generate_demo_response(message)
          
           response_msg = Message(
               role="assistant",
               content=response,
               timestamp=datetime.now(),
               metadata={"agent_id": self.agent_id, "role": self.role.value}
           )
           self.memory.append(response_msg)
          
           return {
               "agent_id": self.agent_id,
               "role": self.role.value,
               "response": response,
               "capabilities_used": self._analyze_capabilities_used(message),
               "next_actions": self._suggest_next_actions(response),
               "timestamp": datetime.now().isoformat()
           }
          
       except Exception as e:
           logger.error(f"Error processing message: {e}")
           return {"error": str(e)}
  
   def _generate_response_gemini(self, prompt: str) -> str:
       """Generate response using Gemini API - Synchronous"""
       try:
           response = self.model.generate_content(prompt)
           return response.text
       except Exception as e:
           logger.error(f"Gemini API error: {e}")
           return self._generate_demo_response(prompt)
  
   def _generate_demo_response(self, message: str) -> str:
       """Generate simulated response for demo purposes"""
       role_responses = {
           AgentRole.COORDINATOR: f"As coordinator, I'll break down the task: '{message[:50]}...' into manageable components and assign them to specialized agents.",
           AgentRole.RESEARCHER: f"I'll research information about: '{message[:50]}...' using my data gathering and synthesis capabilities.",
           AgentRole.ANALYZER: f"Analyzing the patterns and insights from: '{message[:50]}...' to provide data-driven recommendations.",
           AgentRole.EXECUTOR: f"I'll execute the necessary actions for: '{message[:50]}...' and validate the results."
       }
      
       base_response = role_responses.get(self.role, f"Processing: {message[:50]}...")
      
       time.sleep(0.5) 
      
       additional_context = {
           AgentRole.COORDINATOR: " I've identified 3 key subtasks and will coordinate their execution across the agent team.",
           AgentRole.RESEARCHER: " My research indicates several relevant sources and current trends in this area.",
           AgentRole.ANALYZER: " The data shows interesting correlations and actionable insights for decision making.",
           AgentRole.EXECUTOR: " I've completed the requested actions and verified the outputs meet quality standards."
       }
      
       return base_response + additional_context.get(self.role, "")
  
   def _generate_contextual_prompt(self, message: str, context: Optional[Dict]) -> str:
       """Generate context-aware prompt based on agent role"""
      
       base_prompt = f"""
       You are an advanced AI agent with the role: {self.role.value}
       Your capabilities: {', '.join(self.context.capabilities)}
       Available tools: {', '.join(self.context.tools)}
      
       Recent conversation context:
       {self._get_recent_context()}
      
       Current request: {message}
       """
      
       role_instructions = {
           AgentRole.COORDINATOR: """
           Focus on breaking down complex tasks, coordinating with other agents,
           and maintaining overall project coherence. Consider dependencies and priorities.
           Provide clear task decomposition and agent assignments.
           """,
           AgentRole.RESEARCHER: """
           Prioritize accurate information gathering, source verification,
           and comprehensive data collection. Synthesize findings clearly.
           Focus on current trends and reliable sources.
           """,
           AgentRole.ANALYZER: """
           Focus on pattern recognition, data interpretation, and insight generation.
           Provide evidence-based conclusions and actionable recommendations.
           Highlight key correlations and implications.
           """,
           AgentRole.EXECUTOR: """
           Concentrate on practical implementation, result validation,
           and clear output delivery. Ensure actions are completed effectively.
           Focus on quality and completeness of execution.
           """
       }
      
       return base_prompt + role_instructions.get(self.role, "")
  
   def _get_recent_context(self, limit: int = 3) -> str:
       """Get recent conversation context"""
       if not self.memory:
           return "No previous context"
      
       recent = self.memory[-limit:]
       context_str = ""
       for msg in recent:
           context_str += f"{msg.role}: {msg.content[:100]}...\n"
       return context_str
  
   def _analyze_capabilities_used(self, message: str) -> List[str]:
       """Analyze which capabilities were likely used"""
       used_capabilities = []
       message_lower = message.lower()
      
       capability_keywords = {
           "task_decomposition": ["break down", "divide", "split", "decompose"],
           "data_gathering": ["research", "find", "collect", "gather"],
           "pattern_recognition": ["analyze", "pattern", "trend", "correlation"],
           "action_execution": ["execute", "run", "implement", "perform"],
           "agent_orchestration": ["coordinate", "manage", "organize", "assign"],
           "information_synthesis": ["synthesize", "combine", "merge", "integrate"]
       }
      
       for capability, keywords in capability_keywords.items():
           if capability in self.context.capabilities:
               if any(keyword in message_lower for keyword in keywords):
                   used_capabilities.append(capability)
      
       return used_capabilities
  
   def _suggest_next_actions(self, response: str) -> List[str]:
       """Suggest logical next actions based on response"""
       suggestions = []
       response_lower = response.lower()
      
       if "need more information" in response_lower or "research" in response_lower:
           suggestions.append("delegate_to_researcher")
       if "analyze" in response_lower or "pattern" in response_lower:
           suggestions.append("delegate_to_analyzer") 
       if "implement" in response_lower or "execute" in response_lower:
           suggestions.append("delegate_to_executor")
       if "coordinate" in response_lower or "manage" in response_lower:
           suggestions.append("initiate_multi_agent_collaboration")
       if "subtask" in response_lower or "break down" in response_lower:
           suggestions.append("task_decomposition_required")
          
       return suggestions if suggestions else ["continue_conversation"]
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

NVIDIA AI Releases Universal Deep Research (UDR): A Prototype Framework for Scalable and Auditable Deep Research Agents

septembre 10, 2025

DOE selects MIT to establish a Center for the Exascale Simulation of Coupled High-Enthalpy Fluid–Solid Interactions | MIT News

septembre 10, 2025

The Download: AI’s energy future

septembre 10, 2025

Building a Speech Enhancement and Automatic Speech Recognition (ASR) Pipeline in Python Using SpeechBrain

septembre 10, 2025
Add A Comment

Comments are closed.

Top Posts

SwissCryptoDaily.ch delivers the latest cryptocurrency news, market insights, and expert analysis. Stay informed with daily updates from the world of blockchain and digital assets.

We're social. Connect with us:

Facebook X (Twitter) Instagram Pinterest YouTube
Top Insights

Hyperliquid Price Soars As Ethena Enters USDH Stablecoin Race

septembre 11, 2025

Bitcoin MACD Golden Cross Gives $160K BTC Price Target

septembre 11, 2025

BitMine adds over 46k ETH to treasury as total holdings near $10B

septembre 11, 2025
Get Informed

Subscribe to Updates

Get the latest creative news from FooBar about art, design and business.

Facebook X (Twitter) Instagram Pinterest
  • About us
  • Get In Touch
  • Cookies Policy
  • Privacy-Policy
  • Terms and Conditions
© 2025 Swisscryptodaily.ch.

Type above and press Enter to search. Press Esc to cancel.