ai
  • Crypto News
  • Ai
  • eSports
  • Bitcoin
  • Ethereum
  • Blockchain
Home»Ai»How to Build a Multilingual OCR AI Agent in Python with EasyOCR and OpenCV
Ai

How to Build a Multilingual OCR AI Agent in Python with EasyOCR and OpenCV

Share
Facebook Twitter LinkedIn Pinterest Email
class AdvancedOCRAgent:
   """
   Advanced OCR AI Agent with preprocessing, multi-language support,
   and intelligent text extraction capabilities.
   """
  
   def __init__(self, languages: List[str] = ['en'], gpu: bool = True):
       """Initialize OCR agent with specified languages."""
       print("🤖 Initializing Advanced OCR Agent...")
       self.languages = languages
       self.reader = easyocr.Reader(languages, gpu=gpu)
       self.confidence_threshold = 0.5
       print(f"✅ OCR Agent ready! Languages: {languages}")
  
   def upload_image(self) -> Optional[str]:
       """Upload image file through Colab interface."""
       print("📁 Upload your image file:")
       uploaded = files.upload()
       if uploaded:
           filename = list(uploaded.keys())[0]
           print(f"✅ Uploaded: {filename}")
           return filename
       return None
  
   def preprocess_image(self, image: np.ndarray, enhance: bool = True) -> np.ndarray:
       """Advanced image preprocessing for better OCR accuracy."""
       if len(image.shape) == 3:
           gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
       else:
           gray = image.copy()
      
       if enhance:
           clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
           gray = clahe.apply(gray)
          
           gray = cv2.fastNlMeansDenoising(gray)
          
           kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
           gray = cv2.filter2D(gray, -1, kernel)
      
       binary = cv2.adaptiveThreshold(
           gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2
       )
      
       return binary
  
   def extract_text(self, image_path: str, preprocess: bool = True) -> Dict:
       """Extract text from image with advanced processing."""
       print(f"🔍 Processing image: {image_path}")
      
       image = cv2.imread(image_path)
       if image is None:
           raise ValueError(f"Could not load image: {image_path}")
      
       if preprocess:
           processed_image = self.preprocess_image(image)
       else:
           processed_image = image
      
       results = self.reader.readtext(processed_image)
      
       extracted_data = {
           'raw_results': results,
           'filtered_results': [],
           'full_text': '',
           'confidence_stats': {},
           'word_count': 0,
           'line_count': 0
       }
      
       high_confidence_text = []
       confidences = []
      
       for (bbox, text, confidence) in results:
           if confidence >= self.confidence_threshold:
               extracted_data['filtered_results'].append({
                   'text': text,
                   'confidence': confidence,
                   'bbox': bbox
               })
               high_confidence_text.append(text)
               confidences.append(confidence)
      
       extracted_data['full_text'] = ' '.join(high_confidence_text)
       extracted_data['word_count'] = len(extracted_data['full_text'].split())
       extracted_data['line_count'] = len(high_confidence_text)
      
       if confidences:
           extracted_data['confidence_stats'] = {
               'mean': np.mean(confidences),
               'min': np.min(confidences),
               'max': np.max(confidences),
               'std': np.std(confidences)
           }
      
       return extracted_data
  
   def visualize_results(self, image_path: str, results: Dict, show_bbox: bool = True):
       """Visualize OCR results with bounding boxes."""
       image = cv2.imread(image_path)
       image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
      
       plt.figure(figsize=(15, 10))
      
       if show_bbox:
           plt.subplot(2, 2, 1)
           img_with_boxes = image_rgb.copy()
          
           for item in results['filtered_results']:
               bbox = np.array(item['bbox']).astype(int)
               cv2.polylines(img_with_boxes, [bbox], True, (255, 0, 0), 2)
              
               x, y = bbox[0]
               cv2.putText(img_with_boxes, f"{item['confidence']:.2f}",
                          (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
          
           plt.imshow(img_with_boxes)
           plt.title("OCR Results with Bounding Boxes")
           plt.axis('off')
      
       plt.subplot(2, 2, 2)
       processed = self.preprocess_image(image)
       plt.imshow(processed, cmap='gray')
       plt.title("Preprocessed Image")
       plt.axis('off')
      
       plt.subplot(2, 2, 3)
       confidences = [item['confidence'] for item in results['filtered_results']]
       if confidences:
           plt.hist(confidences, bins=20, alpha=0.7, color="blue")
           plt.xlabel('Confidence Score')
           plt.ylabel('Frequency')
           plt.title('Confidence Score Distribution')
           plt.axvline(self.confidence_threshold, color="red", linestyle="--",
                      label=f'Threshold: {self.confidence_threshold}')
           plt.legend()
      
       plt.subplot(2, 2, 4)
       stats = results['confidence_stats']
       if stats:
           labels = ['Mean', 'Min', 'Max']
           values = [stats['mean'], stats['min'], stats['max']]
           plt.bar(labels, values, color=['green', 'red', 'blue'])
           plt.ylabel('Confidence Score')
           plt.title('Confidence Statistics')
           plt.ylim(0, 1)
      
       plt.tight_layout()
       plt.show()
  
   def smart_text_analysis(self, text: str) -> Dict:
       """Perform intelligent analysis of extracted text."""
       analysis = {
           'language_detection': 'unknown',
           'text_type': 'unknown',
           'key_info': {},
           'patterns': []
       }
      
       email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
       phone_pattern = r'(\+\d{1,3}[-.\s]?)?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}'
       url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
       date_pattern = r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b'
      
       patterns = {
           'emails': re.findall(email_pattern, text, re.IGNORECASE),
           'phones': re.findall(phone_pattern, text),
           'urls': re.findall(url_pattern, text, re.IGNORECASE),
           'dates': re.findall(date_pattern, text)
       }
      
       analysis['patterns'] = {k: v for k, v in patterns.items() if v}
      
       if any(patterns.values()):
           if patterns.get('emails') or patterns.get('phones'):
               analysis['text_type'] = 'contact_info'
           elif patterns.get('urls'):
               analysis['text_type'] = 'web_content'
           elif patterns.get('dates'):
               analysis['text_type'] = 'document_with_dates'
      
       if re.search(r'[а-яё]', text.lower()):
           analysis['language_detection'] = 'russian'
       elif re.search(r'[àáâãäåæçèéêëìíîïñòóôõöøùúûüý]', text.lower()):
           analysis['language_detection'] = 'romance_language'
       elif re.search(r'[一-龯]', text):
           analysis['language_detection'] = 'chinese'
       elif re.search(r'[ひらがなカタカナ]', text):
           analysis['language_detection'] = 'japanese'
       elif re.search(r'[a-zA-Z]', text):
           analysis['language_detection'] = 'latin_based'
      
       return analysis
  
   def process_batch(self, image_folder: str) -> List[Dict]:
       """Process multiple images in batch."""
       results = []
       supported_formats = ('.png', '.jpg', '.jpeg', '.bmp', '.tiff')
      
       for filename in os.listdir(image_folder):
           if filename.lower().endswith(supported_formats):
               image_path = os.path.join(image_folder, filename)
               try:
                   result = self.extract_text(image_path)
                   result['filename'] = filename
                   results.append(result)
                   print(f"✅ Processed: {filename}")
               except Exception as e:
                   print(f"❌ Error processing {filename}: {str(e)}")
      
       return results
  
   def export_results(self, results: Dict, format: str="json") -> str:
       """Export results in specified format."""
       if format.lower() == 'json':
           output = json.dumps(results, indent=2, ensure_ascii=False)
           filename="ocr_results.json"
       elif format.lower() == 'txt':
           output = results['full_text']
           filename="extracted_text.txt"
       else:
           raise ValueError("Supported formats: 'json', 'txt'")
      
       with open(filename, 'w', encoding='utf-8') as f:
           f.write(output)
      
       print(f"📄 Results exported to: {filename}")
       return filename
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

The Download: America’s gun crisis, and how AI video models work

septembre 12, 2025

How do AI models generate videos?

septembre 12, 2025

Deepdub Introduces Lightning 2.5: A Real-Time AI Voice Model With 2.8x Throughput Gains for Scalable AI Agents and Enterprise AI

septembre 12, 2025

TwinMind Introduces Ear-3 Model: A New Voice AI Model that Sets New Industry Records in Accuracy, Speaker Labeling, Languages and Price

septembre 12, 2025
Add A Comment

Comments are closed.

Top Posts

SwissCryptoDaily.ch delivers the latest cryptocurrency news, market insights, and expert analysis. Stay informed with daily updates from the world of blockchain and digital assets.

We're social. Connect with us:

Facebook X (Twitter) Instagram Pinterest YouTube
Top Insights

Fortnite Returns to Duos Format with Four LAN Events and Mobile Series

septembre 13, 2025

Tron’s Gas Fee Reduction Cuts Daily Revenue by 64% in 10 Days

septembre 12, 2025

Tron’s Gas Fee Reduction Cuts Daily Revenue by 64% in 10 Days

septembre 12, 2025
Get Informed

Subscribe to Updates

Get the latest creative news from FooBar about art, design and business.

Facebook X (Twitter) Instagram Pinterest
  • About us
  • Get In Touch
  • Cookies Policy
  • Privacy-Policy
  • Terms and Conditions
© 2025 Swisscryptodaily.ch.

Type above and press Enter to search. Press Esc to cancel.