Yet those same constraints have pushed Chinese companies toward a different playbook: pooling compute, optimizing efficiency, and releasing open-weight models. DeepSeek-V3’s training run, for example, used just 2.6 million GPU-hours—far below the scale of US counterparts. But Alibaba’s Qwen models now rank among the most downloaded open-weights globally, and companies like Zhipu and MiniMax are building competitive multimodal and video models.
China’s industrial policy means new models can move from lab to implementation fast. Local governments and major enterprises are already rolling out reasoning models in administration, logistics, and finance.
Education is another advantage. Major Chinese universities are implementing AI literacy programs in their curricula, embedding skills before the labor market demands them. The Ministry of Education has also announced plans to integrate AI training for children of all school ages. I’m not sure the phrase “engineering state” fully captures China’s relationship with new technologies, but decades of infrastructure building and top-down coordination have made the system unusually effective at pushing large-scale adoption, often with far less social resistance than you’d see elsewhere. The use at scale, naturally, allows for faster iterative improvements.
Meanwhile, Stanford HAI’s 2025 AI Index found Chinese respondents to be the most optimistic in the world about AI’s future—far more optimistic than populations in the US or the UK. It’s striking, given that China’s economy has slowed since the pandemic for the first time in over two decades. Many in government and industry now see AI as a much-needed spark. Optimism can be powerful fuel, but whether it can persist through slower growth is still an open question.
Social control remains part of the picture, but a different kind of ambition is taking shape. The Chinese AI founders in this new generation are the most globally minded I’ve seen, moving fluidly between Silicon Valley hackathons and pitch meetings in Dubai. Many are fluent in English and in the rhythms of global venture capital. Having watched the last generation wrestle with the burden of a Chinese label, they now build companies that are quietly transnational from the start.
The US may still lead in speed and experimentation, but China could shape how AI becomes part of daily life, both at home and abroad. Speed matters, but speed isn’t the same thing as supremacy.
John Thornhill replies:
You’re right, Caiwei, that speed is not the same as supremacy (and “murder” may be too strong a word). And you’re also right to amplify the point about China’s strength in open-weight models and the US preference for proprietary models. This is not just a struggle between two different countries’ economic models but also between two different ways of deploying technology.
								
